Center Supported Publications

SDMRC - Center Supported Publications

Dr. Cho

Highlighted Publication

Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle.

  • Yoshitake Cho, Bethany C. Hazen, Paulo G. Gandra, Samuel R. Ward, Simon Schenk, Aaron P. Russell and Anastasia Kralli
    FASEB J. 2016 Feb;30(2):674-87. doi: 10.1096/fj.15-276360. Epub 2015 Oct 19.
    PMID: 26481306
This article highlights the research of Yoshitake Cho on the importance of PERM1 for mitochondrial maintenance in skeletal muscles. His research is aimed at identifying molecules that are important for muscle adaptations in response to endurance exercise.
Get the article here.

How to acknowledge SDMRC supported research:


Please acknowledge funding support from the SDMRC P30 NIH grant P30AR061303 in your manuscripts.

Center Supported Publications

2011

  1. Wu X, Xu K, Zhang L, Deng Y, Lee P, Shapiro E, Monaco M, Makarenkova HP, Li J, Lepor H, Grishina I. 2011. Differentiation of the ductal epithelium and smooth muscle in the prostate gland are regulated by the Notch/PTEN-dependent mechanism. Dev Biol. 2011 May 20. PMCID: PMC3152294
  2. Ingraham CA, Park GC, Makarenkova HP, Crossin KL . 2011 Matrix metalloproteinase (MMP)-9 induced by Wnt signaling increases the proliferation and migration of embryonic neural stem cells at low O2 levels. J Biol Chem. 2011 Apr 1. PMCID: PMC3093840.

2012

  1. Gokhin DS, Kim NE, Lewis SA, Hoenecke HR, D’Lima DD, Fowler VM. Thin-filament length correlates with fiber type in human skeletal muscle. Am J Physiol Cell Physiol. 2012 Feb;302(3):C555-65. PMC3287155.

  2. Makarenkova H.P., Meech R. The Barx homeobox family in muscle development and regeneration. 2012. Int Rev Cell Mol Biol. 2012; 297:117-73. PMCID: 22608559.

  3. Meech R, Gonzalez KN, Barro M, Gromova A, Zhuang L, Hulin JA, Makarenkova H.P. 2012. Barx2 is expressed in satellite cells and is required for normal muscle growth and regeneration. Stem Cells. 2012 Feb;30(2):253-65. PMCID: 22076929.
  4. Ochala, J., D.S. Gokhin, I. Penisson-Besnier, S. Quijano-Roy, N. Monnier, J. Lunardi, N.B. Romero and V.M. Fowler. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum. Mol. Gen., 2012 Oct 15;21(20):4473-85. Epub 2012 Jul 13. PMID: 22798622
  5. Lange L, Perera S, The P, and Chen J. Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover. Mol Biol Cell. 23:2490-504, 2012. PMC3386213
  6. Choi YS, Vincent LG, Lee AR, Kretchmer KC, Chirasatitsin S, Dobke MK, Engler AJ. The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices. Biomaterials. 2012 Oct;33(29):6943-51. doi: 10.1016/j.biomaterials.2012.06.057. Epub 2012 Jul 15. PubMed PMID: 22800539; PubMed Central PMCID: PMC3408879.
  7. Cai W, Guzzo RM, Wei K, Willems E, Davidovics H, Mercola M. A Nodal-to-TGFβ cascade exerts biphasic control over cardiopoiesis. Circ Res. 2012 Sep 14;111(7):876-81. doi: 10.1161/CIRCRESAHA.112.270272. Epub 2012 Aug 7. PubMed PMID: 22872153; PubMed Central PMCID: PMC3766357.
  8. Puri PL, Mercola M. BAF60 A, B, and Cs of muscle determination and renewal. Genes Dev. 2012 Dec 15;26(24):2673-83. doi: 10.1101/gad.207415.112. Epub 2012 Dec 7. Review. PubMed PMID: 23222103; PubMed Central PMCID: PMC3533072.

2013

  1. Gokhin DS, Fowler VM. A two-segment model for thin filament architecture in skeletal muscle. Nat Rev Mol Cell Biol. 2013 Feb;14(2):113-9. PMC3711620.
  2. Randazzo D, Giacomello E, Lorenzini S, Reggiani C, Lange S, Peter AK, Chen J, and Sorrentino V. Obscurin is Required for AnkyrinB-dependent Localization of Dystrophin and Sarcolemma Integrity in Skeletal Muscle Fibers. J Cell Biol. 200:523-536. 2013. PMID: 23420875.
  3. Domenighetti, A, Chu, P, Wu, T, Sheikh, F, Gokhin, D, Guo, L, Cui, Z, Peter, A. Li, D., Banerjee, I, Lai, X, Witzmann, F, Gomes, A, Shelton, D, Lieber, R, Chen, J. (2013). Loss of FHL1 induces an age-dependent skeletal muscle myopathy associated with myofibrillar and intermyofibrillar disorganization in mice. J. Cell Sci. PMCID: PMC3916749.
  4. Mozzetta C, Consalvi S, Saccone V, Tierney MT, Diamantini A, Mitchell K, Marazzi G, Borsellino G, Battistini L, Sassoon D, Sacco A and Puri PL (2013). Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old mdx mice. EMBO Molecular Medicine, Apr;5(4):626-39. PMCID: PMC3628105.
  5. Hwang Y, Suk S, Tierney MT, Lin S, Du B, Seo T, Mitchell A, Sacco A and Varghese S (2013). Directed in vitro myogenesis of human embryonic stem cells and their in vivo engraftment. PLOS One, Aug 19;8(8). PMCID: PMC3747108.
  6. Yamamoto DL, Vitiello C, Zhang J, Gokhin DS, Castaldi A, Coulis G, Piaser F, Filomena MC, Eggenhuizen PJ, Kunderfranco P, Camerini S, Takano K, Endo T, Crescenzi M, Luther P, Lieber RL, Chen J*, Bang ML. The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse. J Cell Sci. 126(Pt 23):5477-89. 2013. doi: 10.1242/jcs.137026. Epub 2013 Sep 17. *Co-corresponding author. PMC3843138.
  7. Smith LR, Chambers HG, Lieber RL. Reduced satellite cell population may lead to contractures in children with cerebral palsy. Dev Med Child Neurol. 2013 Mar;55(3):264-70. doi: 10.1111/dmcn.12027. Epub 2012 Dec 5. PubMed PMID: 23210987.
  8. Arnet U, Muzykewicz DA, Fridén J, Lieber RL. Intrinsic hand muscle function, part 1: creating a functional grasp. J Hand Surg Am. (2013) PubMed PMID: 24206973.
  9. Muzykewicz DA, Arnet U, Lieber RL, Fridén J. Intrinsic hand muscle function, part 2: kinematic comparison of 2 reconstructive procedures. J Hand Surg Am. (2013) PubMed PMID: 24206974.

2014

  1. Bean C, Verma NK, Yamamoto DL, Chemello F, Cenni V, Filomena MC, Chen J, Bang ML, and Lanfranchi G. Ankrd2 is a modulator of NF-kB mediated inflammatory responses in muscle. Cell Death & Disease. Cell Death Dis. 2014 Jan 16;5:e1002. PMID: 24434510.
  2. Tuttle LJ, Nguyen OT, Cook MS, Alperin M, Shah SB, Ward SR, Lieber RL. Architectural design of the pelvic floor is consistent with muscle functional subspecialization. Int Urogynecol J. 2014 Feb;25(2):205-12. doi: 10.1007/s00192-013-2189-5. Epub 2013 Aug 1. PubMed PMID: 23903821; PubMed Central PMCID: PMC4104205
  3. Ochala J, Gokhin DS, Iwamoto H, Fowler VM. Pointed-end capping by tropomodulin modulates actomyosin crossbridge formation in skeletal muscle fibers. FASEB J. 2014 Jan;28(1):408-15. PMC3868837
  4. Tuttle LJ, Alperin M, Lieber RL. Post-mortem timing of skeletal muscle biochemical and mechanical degradation. J Biomech. (2014) PubMed PMID: 24589021; PubMed Central PMCID: PMC3992263.
  5. Meyer GA, Schenk S, Lieber RL. Role of the cytoskeleton in muscle transcriptional responses to altered use. PhysiolGenomics. (2013) PubMed PMID: 23444318.
  6. Wahlquist C, Jeong D, Rojas-Muñoz A, Kho C, Lee A, Mitsuyama S, van Mil A, Park WJ, Sluijter JP, Doevendans PA, Hajjar RJ, Mercola M. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature. 2014 Apr 24;508(7497):531-5. doi: 10.1038/nature13073. Epub 2014 Mar 12. PubMed PMID: 24670661.
  7. Gokhin DS, Tierney MT, Sui Z, Sacco A and Fowler VM (2014). Calpain-mediated proteolysis of tropomodulin isoforms leads to thin filament elongation in dystrophic skeletal muscle. Molecular Biology of the Cell (MBoC), Mar;25(6):852-65. PMCID: PMC3952854
  8. Chakkalakal JV, Christensen J, Xiang W, Tierney MT, Boscolo FS, Sacco A and Brack AS (2014). Early forming label-retaining muscle stem cells require p27kip for the maintenance of their primitive state. Development, Apr;141(8):1649-59. PMCID: PMC3978835
  9. McKeown CR, Nowak RB, Gokhin DS, Fowler VM. Tropomyosin is required for cardiac morphogenesis, myofibril assembly, and formation of adherens junctions in the developing mouse embryo. Dev Dyn. 2014 Jun;243(6):800-17. PMC4031292
  10. Chapman MA, Zhang J, Banerjee I, Guo LT, Zhang Z, Shelton GD, Ouyang K, Lieber RL, Chen J. Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle. Hum Mol Genet. 2014 Jun 18. pii: ddu310. PMID: 24943590
  11. Gokhin DS, Dubuc EA, Lian KQ, Peters LL, Fowler VM. Alterations in thin filament length during postnatal skeletal muscle development and aging in mice. Front Physiol. 2014 Sep 29;5:375. PMC4178374
  12. Lun AS, Chen J*, and Lange S. Probing muscle ankyrin-repeat protein (MARP) structure and function. *Co-corresponding author. Anat Rec (Hoboken). 2014 Sep;297(9):1615-29. PMID: 25125175
  13. Tierney MT*, Aydogdu T*, Sala D, Malecova B, Gatto S, Puri PL, Latella L and Sacco A (2014). STAT3 signaling controls muscle stem cell number and function. Nature Medicine,Oct;20(10):1182-6.PMID: 25194572
  14. Yuen M, Sandaradura SA, Dowling JJ, Kostyukova AS, Moroz N, Quinlan KG, Lehtokari VL, Ravenscroft G, Todd EJ, Ceyhan-Birsoy O, Gokhin DS, Maluenda J, Lek M, Nolent F, Pappas CT, Novak SM, D’Amico A, Malfatti E, Thomas BP, Gabriel SB, Gupta N, Daly MJ, Ilkovski B, Houweling PJ, Davidson AE, Swanson LC, Brownstein CA, Gupta VA, Medne L, Shannon P, Martin N, Bick DP, Flisberg A, Holmberg E, Van den Bergh P, Lapunzina P, Waddell LB, Sloboda DD, Bertini E, Chitayat D, Telfer WR, Laquerrière A, Gregorio CC, Ottenheijm CA, Bönnemann CG, Pelin K, Beggs AH, Hayashi YK, Romero NB, Laing NG, Nishino I, Wallgren-Pettersson C, Melki J, Fowler VM, MacArthur DG, North KN, Clarke NF. Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. J Clin Invest. 2014. in press. PMID: 25250574

2015

  1. Wei et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015 Sep 24;525(7570):479-85. PMID: 26375005 .
  2. Meyer et al. Muscle progenitor cell regenerative capacity in the torn rotator cuff. J Orthop Res. 2015 Mar;33(3):421-9. PMID: 25410765 .
  3. Sacco & Puri. Regulation of Muscle Satellite Cell Function in Tissue Homeostasis and Aging. Cell Stem Cell. 2015 Jun 4;16(6):585-7. PMID: 26046757 .
  4. Wei et al. Developmental origin of age-related coronary artery disease. Cardiovasc Res. 2015 Jul 15;107(2):287-94. PMID: 26054850 .
  5. Dayanidhi et al. Reduced satellite cell number in situ in muscular contractures from children with cerebral palsy. J Orthop Res. 2015 Jul;33(7):1039-45. PMID: 25732238 .
  6. Cabral-Teixeira et al. Cholesterol-derived glucocorticoids control early fate specification in embryonic stem cells. Stem Cell Res. 2015 Jul;15(1):88-95. PMID: 26024790 .
  7. Chapman et al. Collagen crosslinking does not dictate stiffness in a transgenic mouse model of skeletal muscle fibrosis. J Biomech. 2015 Jan 21;48(2):375-8. PMID: 25529136 .
  8. Palmisano et al. Skeletal muscle intermediate filaments form a stress-transmitting and stress-signaling network. J Cell Sci. 2015 Jan 15;128(2):219-24. PMID: 25413344 .
  9. Mathewson et al. High resolution muscle measurements provide insights into equinus contractures in patients with cerebral palsy. J Orthop Res. 2015 Jan;33(1):33-9. PMID: 25242618 .
  10. Tapia et al. Nuclear envelope protein Lem2 is required for mouse development and regulates MAP and AKT kinases. PLoS One. 2015 Mar 19;10(3):e0116196. PMID: 25790465 .
  11. Kang et al. Combinations of Kinase Inhibitors Protecting Myoblasts against Hypoxia. PLoS One. 2015 Jun 4;10(6):e0126718. PMID: 26042811 .
  12. Farup et al. Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle homeostasis, regeneration and disease. Cell Death Dis. 2015 Jul 23;6:e1830. PMID: 26203859 .
  13. Sato et al. Skeletal muscle fibrosis and stiffness increase after rotator cuff tendon injury and neuromuscular compromise in a rat model. J Orthop Res. 2014 Sep;32(9):1111-6. PMID: 24838823 .
  14. Lao et al. Lmo7 is dispensable for skeletal muscle and cardiac function. Am J Physiol Cell Physiol. 2015 Oct 1;309(7):C470-9. doi: 10.1152/ajpcell.00177.2015. PMID: 26157009 .
  15. Wei et al. Developmental origin of age-related coronary artery disease. Cardiovasc Res. 2015 Jul 15;107(2):287-94. doi: 10.1093/cvr/cvv167. PMID: 26054850 .

2016

  1. Cho et al. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle. FASEB J. 2016 Feb;30(2):674-87. doi: 10.1096/fj.15-276360. Epub 2015 Oct 19. PMID: 26481306 .
  2. Toto et al. SWI/SNF-directed stem cell lineage specification: dynamic composition regulates specific stages of skeletal myogenesis. Cell Mol Life Sci. 2016 Oct;73(20):3887-96. doi: 10.1007/s00018-016-2273-3. PMID: 27207468 .
  3. Kinney et al. Reduced skeletal muscle satellite cell number alters muscle morphology after chronic stretch but allows limited serial sarcomere addition. Muscle Nerve. 2016 Jun 24. doi: 10.1002/mus.25227. PMID: 27343167 .
  4. Tierney et al. Innervation of dystrophic muscle after muscle stem cell therapy. Muscle & Nerve. 2016 August 17. doi: 10.1002/mus.25115..
  5. Zogby et al. Skeletal muscle fiber-type specific succinate dehydrogenase activity in cerebral palsy. Muscle Nerve. 2017 Jan;55(1):122-124. doi: 10.1002/mus.25379. Epub 2016 Sep 26. PMID: 27515237 .
  6. Chapman et al. Multiple Specific Cell Types Produce Type 1 Collagen During Skeletal Muscle Fibrosis. FASEB J. 2016 Aprilvol. 30 no. 1. doi: 10.1096/fj.1530-6860. view at the journal .
  7. Sala et al. Signal transducer and activator of transcription 3 signaling as a potential target to treat muscle wasting diseases. Curr Opin Clin Nutr Metab Care. 2016 May;19(3):171-6. doi: 10.1097/MCO.0000000000000273. PMID: 27023048 .
  8. Sala et al. Understanding Mechanobiology: Physical Therapists as a Force in Mechanotherapy and Musculoskeletal Regenerative Rehabilitation. Phys Ther. 2016 Apr;96(4):560-9. doi: 10.2522/ptj.20150224. Epub 2015 Dec 4. PMID: 26637643 .
  9. Fiacco et al. Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Phys Ther. Cell Death Differ. 2016 Nov 1;23(11):1839-1849. doi: 10.1038/cdd.2016.70. Epub 2016 Jul 22. PMID: 27447110 .

2017

  1. Gokhin et al. Software-based measurement of thin filament lengths: an open-source GUI for Distributed Deconvolution analysis of fluorescence images. J Microsc. 2017 Jan;265(1):11-20. doi: 10.1111/jmi.12456. Epub 2016 Sep 19. PMID: 27644080 .
  2. Tierney et al. Engraftment of FACS Isolated Muscle Stem Cells into Injured Skeletal Muscle. Methods Mol Biol. 2017;1556:223-236. doi: 10.1007/978-1-4939-6771-1_11. PMID: 28247352 .
  3. Chapman et al. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis. Am J Physiol Cell Physiol. 2017 Feb 1;312(2):C131-C143. doi: 10.1152/ajpcell.00226.2016. Epub 2016 Nov 23. PMID: 27881411 .
  4. Randazzo et al. Exercise-induced alterations and loss of sarcomeric M-line organization in the diaphragm muscle of obscurin knockout mice. Am J Physiol Cell Physiol. 2017 Jan 1;312(1):C16-C28. doi: 10.1152/ajpcell.00098.2016. Epub 2016 Oct 26. PMID: 27784675 .
  5. Consavli et al. Praja1 E3 ubiquitin ligase promotes skeletal myogenesis through degradation of EZH2 upon p38α activation. Am J Physiol Cell Physiol. Nat Commun. 2017 Jan 9;8:13956. doi: 10.1038/ncomms13956. PMID: 28067271 .
  6. Gatto et al. Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells. Phys Ther. Methods Mol Biol. 2017;1556:191-219. doi: 10.1007/978-1-4939-6771-1_10. PMID: 28247351 .